
VMime Book

A Developer’s Guide To VMime

Vincent Richard
vincent@vmime.org

August 17, 2018

Contents

1 Introduction 5

1.1 Overview . 5

1.2 Features . 5

1.3 Copyright and license . 6

2 Building and Installing VMime 8

2.1 Introduction . 8

2.2 What you need . 8

2.3 Obtaining source files . 8

2.4 Compiling and installing . 9

2.5 Customizing build . 10

2.6 Build options . 10

3 Getting Started 12

3.1 Using VMime in your programs . 12

3.2 If you can not (or do not want to) use pkg-config 13

3.3 Platform-dependent code . 13

4 Basics 15

4.1 Reference counting . 15

4.1.1 Introduction . 15

4.1.2 Instanciating reference-counted objects . 16

4.1.3 Using smart pointers . 16

1

4.2 Error handling . 18

4.3 Basic objects . 19

4.3.1 The component class . 19

4.3.2 Date and time . 20

4.3.3 Media type . 20

4.3.4 Mailbox and mailbox groups . 21

4.4 Message, body parts and header . 22

4.4.1 Introduction to MIME messages . 22

4.4.2 Header and header fields . 23

4.4.2.1 Standard header fields . 23

4.4.2.2 Parameterized fields . 24

4.5 Streams . 25

4.5.1 Streams and stream adapters . 25

4.5.2 Stream filters . 26

4.6 Content handlers . 26

4.6.1 Introduction . 26

4.6.2 Extracting data from content handlers . 26

4.6.3 Creating content handlers . 27

4.7 Character sets, charsets and conversions . 28

4.8 Non-ASCII text in header fields . 29

4.9 Encodings . 30

4.9.1 Introduction . 30

4.9.2 Using encoders . 30

4.9.3 Enumerating available encoders . 31

4.10 Progress listeners . 32

5 Parsing and Building Messages 33

5.1 Parsing messages . 33

5.1.1 Introduction . 33

2

5.1.2 Using the vmime::messageParser object 34

5.2 Building messages . 36

5.2.1 A simple message . 36

5.2.2 Adding an attachment . 38

5.2.3 HTML messages and embedded objects 39

5.3 Working with attachments: the attachment helper 40

6 Working with Messaging Services 42

6.1 Introduction . 42

6.2 Working with sessions . 44

6.2.1 Setting properties . 44

6.2.2 Available properties . 45

6.2.3 Instanciating services . 46

6.3 User credentials and authenticators . 48

6.4 Using transport service . 50

6.5 Using store service . 52

6.5.1 Connecting to a store . 52

6.5.2 Opening a folder . 52

6.5.3 Fetching messages . 53

6.5.4 Extracting messages and parts . 55

6.5.5 Deleting messages . 55

6.5.6 Events . 56

6.6 Handling timeouts . 56

6.7 Secured connection using TLS/SSL . 59

6.7.1 Introduction . 59

6.7.2 Setting up a secured connection . 59

6.7.2.1 Connecting to a “secured” port 59

6.7.2.2 Using STARTTLS . 60

6.7.3 Certificate verification . 60

3

6.7.3.1 How it works . 60

6.7.3.2 Using the default certificate verifier 60

6.7.3.3 Writing your own certificate verifier 62

6.7.4 SSL/TLS Properties . 63

6.8 Tracing connection . 64

Listings 69

List of figures 70

List of tables 71

A The GNU General Public License 72

4

Chapter 1

Introduction

1.1 Overview

VMime is a powerful C++ class library for working with MIME messages and Internet messaging

services like IMAP, POP or SMTP.

With VMime you can parse, generate and modify messages, and also connect to store and

transport services to receive or send messages over the Internet. The library offers all the features

to build a complete mail client.

The main objectives of this library are:

• fully RFC-compliant implementation;

• object-oriented and modular design;

• very easy-to-use (intuitive design);

• well documented code;

• very high reliability;

• maximum portability.

1.2 Features

MIME features:

• Full support for RFC-2822 and multipart messages (RFC-1521)

• Aggregate documents (MHTML) and embedded objects (RFC-2557)

• Message Disposition Notification (RFC-3798)

5

• 8-bit MIME (RFC-2047)

• Encoded word extensions (RFC-2231)

• Attachments

Network features:

• Support for IMAP, POP3 and maildir stores

• Support for SMTP and sendmail transport methods

• Extraction of whole message or specific parts

• TLS/SSL security layer

• SASL authentication

1.3 Copyright and license

VMime library is Free Software and is licensed under the terms of the GNU General Public

License1 (GPL) version 3:

Copyright (C) 2002-2013 Vincent Richard

VMime library is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

VMime is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Linking this library statically or dynamically with other
modules is making a combined work based on this library.
Thus, the terms and conditions of the GNU General Public
License cover the whole combination.

1See Appendix A and http://www.gnu.org/copyleft/gpl.html

6

http://www.gnu.org/copyleft/gpl.html

This document is released under the terms of the GNU Free Documentation License2 (FDL):

Copyright (C) 2004-2013 Vincent Richard

Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts.

2See http://www.gnu.org/copyleft/fdl.html

7

http://www.gnu.org/copyleft/fdl.html

Chapter 2

Building and Installing VMime

2.1 Introduction

If no pre-build packages of VMime is available for your system, or if for some reason you want

to compile it yourself from scratch, this section will guide you through the process.

2.2 What you need

To build VMime from the sources, you will need the following:

• a working C++ compiler with good STL implementation and also a good support for

templates (for example, GNU GCC) ;

• CMake build system ;

• either ICU library or an usable iconv() implementation (see libiconv of GNU Project) ;

• the GNU SASL Library if you want SASL1 support ;

• either the OpenSSL library or the GNU TLS Library if you want SSL and TLS2 support ;

2.3 Obtaining source files

You can download a package containing the source files of the latest release of the VMime library

from the VMime web site.

1Simple Authentication and Security Layer
2Transport Layer Security

8

http://gcc.gnu.org/
http://www.cmake.org/
http://www.icu-project.org
http://www.gnu.org/software/libiconv/
http://www.gnu.org/software/gsasl/
http://www.openssl.org
http://www.gnu.org/software/gnutls/
http://www.vmime.org/

You can also obtain the current development version from the Git repository, which is cur-

rently hosted at GitHub. It can be checked out through anonymous access with the following

instruction:

git clone git://github.com/kisli/vmime

2.4 Compiling and installing

VMime relies on CMake for building. CMake is an open source, cross-platform build system. It

will generate all build scripts required to compile VMime on your platform.

First, extract the tarball or checkout the VMime source code into a directory somewhere on

your system, let’s call it /path/to/vmime-source. Then, create a build directory, which will

contain all intermediate build files and the final libraries, let’s call it /path/to/vmime-build.

From the build directory, run cmake with the -G argument corresponding to your platfor-

m/choice. For example, if you are on a Unix-compatible platform (like GNU/Linux or MacOS)

and want to use the make utility for building, type:

$ cd /path/to/vmime-build
$ cmake -G "Unix Makefiles" /path/to/vmime-source

CMake will perform some tests on your system to check for libs installed and some

platform-specific includes, and create all files needed for compiling the project. Additionally, a

src/vmime/config.hpp file with the parameters detected for your system will be created.

Next, you can start the compilation process:

$ cmake --build .

Please wait a few minutes while the compilation runs (you should have some time to have

a coffee right now!). If you get errors during the compilation, be sure your system meet the

requirements given at the beginning of the chapter. You can also try to get a newer version

(from the Git repository, for example) or to get some help on VMime user forums.

If everything compiled successfully, you can install the library and the development files on

your system:

make install

note: you must do that with superuser rights (root) if you chose to install the library into

the default location (ie: /usr/lib and /usr/include).

Now, you are done! You can jump to the next chapter to know how to use VMime in your

program...

9

2.5 Customizing build

You should not modify the config.hpp file directly. Instead, you should run cmake again,

and specify your build options on the command line. For example, to force using OpenSSL

library instead of GnuTLS for TLS support, type:

$ cmake -G "Unix Makefiles" -DVMIME_TLS_SUPPORT_LIB=openssl

If you want to enable or disable some features in VMime, you can obtain some help by typing

cmake -L. The defaults should be OK though. For a complate list of build options, you can

also refer to section 2.6, page 10. For more information about using CMake, go to the CMake

web site.

note: Delete the CMakeCache.txt file if you changed configuration or if something

changed on your system, as CMake may cache some values to speed things up.

You can also use another build backend, like Ninja3, if you have it on your system:

$ cd /path/to/vmime-build
$ cmake -G Ninja /path/to/vmime-source
$ ninja
ninja install

To install VMime in a directory different from the default directory (/usr on GNU/Linux

systems), set the CMAKE INSTALL PREFIX option:

$ cmake -DCMAKE_INSTALL_PREFIX=/opt/ ...

2.6 Build options

Some options can be given to CMake to control the build:

3https://ninja-build.org/

10

http://www.cmake.org/
http://www.cmake.org/
https://ninja-build.org/

Option name Description

VMIME BUILD SHARED LIBRARY Set to ON to build a shared version (.so) of the li-

brary (default is ON).

VMIME BUILD STATIC LIBRARY Set to ON to build a static version (.a) of the library

(default is ON).

VMIME BUILD TESTS Set to ON to build unit tests (default is OFF).

VMIME TLS SUPPORT LIB Set to either ”openssl” or ”gnutls” to force using

either OpenSSL or GNU TLS for SSL/TLS support

(default depends on which libraries are available on

your system).

VMIME CHARSETCONV LIB Set to either ”iconv”, ”icu” or ”win” (Windows only)

to force using iconv, ICU or Windows built-in API

for converting between charsets (default value de-

pends on which libraries are available on your sys-

tem).

CMAKE BUILD TYPE Set the build type: either ”Release” or ”Debug”. In

Debug build, optimizations are disabled and debug-

ging information are enabled.

Table 2.1: CMake build options

11

Chapter 3

Getting Started

3.1 Using VMime in your programs

First, make sure you have successfully compiled and installed VMime using the instructions

described in Chapter 1.3. To use VMime in your program, you simply have to include VMime

headers:

#include <vmime/vmime.hpp>

note: for versions older than 0.6.1, include <vmime/vmime>.

As of version 0.6.1, VMime uses pkg-config to simplify compiling and linking with VMime.

The pkg-config utility is used to detect the appropriate compiler and linker flags needed for

a library.

You can simply build your program with:

$ g++ ‘pkg-config --cflags --libs vmime‘ -static -o myprog myprog.cpp

to use the static version, or with:

$ g++ ‘pkg-config --cflags vmime‘ -o myprog myprog.cpp ‘pkg-config --libs vmime‘

to use the shared version.

note: it is highly recommended that you link your program against the shared version of

the library.

All VMime classes and global functions are defined in the namespace vmime, so prefix ex-

plicitely all your declarations which use VMime with vmime::, or import the vmime namespace

into the global namespace with the C++ keywork using (not recommended, though).

12

3.2 If you can not (or do not want to) use pkg-config

Linking with the shared library (.so): compile your program with the -lvmime flag. You

can use the -L path flag if the library file is not in a standard path (ie. not in /usr/lib or

/usr/local/lib).

note: if you want to link your program with the shared version of VMime library, make

sure the library has been compiled using CMake build system (make, then make install).

When you compile with SCons, only the static library is built and installed.

Linking with the static library (.a): follow the same procedure as for shared linking

and append the flag -static to force static linking. Although static linking is possible, you are

encouraged to use the shared (dynamic) version of the library.

3.3 Platform-dependent code

While the most part of VMime code is pure ANSI C++, there are some features that are

platform-specific: file management (opening/reading/writing files), network code (socket, DNS

resolution) and time management. All the non-portable stuff is done by a bridge object called

a platform handler (see vmime::platform).

If your platform is POSIX-compatible (eg. GNU/Linux, *BSD) or is Windows, then you

are lucky: VMime has built-in support for these platforms. If not, don’t worry, the sources of

the built-in platform handlers are very well documented, so writing you own should not be very

difficult.

If your VMime version is <= 0.9.1, you should tell VMime which platform handler you want

to use at the beginning of your program (before using any VMime object, or calling any VMime

global function).

So, if your platform is POSIX, your program should look like this:

#include <vmime/vmime.hpp>

#include <vmime/platforms/posix/posixHandler .hpp>

int main()

{
vmime: : platform : :

setHandler <vmime: : platforms : : posix : : posixHandler>();

// Now, you can use VMime

// . . . do what you want, i t ’ s your program . . .

}

Listing 3.1: Initializing VMime and the platform handler

13

For using VMime on Windows, include vmime/platforms/windows/windowsHandler.hpp
and use the following line to initialize the platform handler:

vmime: : platform : :

setHandler <vmime: : platforms : :windows : :windowsHandler>();

note: since version 0.9.2, this is not needed any more: the platform handler is installed

automatically using the platform detected during the build configuration.

note: since version 0.8.1, vmime::platformDependant was renamed to

vmime::platform. The old name has been kept for compatibility but it is recommended

that you update your code, if needed.

14

Chapter 4

Basics

4.1 Reference counting

4.1.1 Introduction

Since version 0.7.2cvs, VMime use smart pointers to simplify memory management. Smart

pointers rely on RAII1 so that we do not need to bother with deleting an object (freeing memory)

when it is not used anymore.

There are two possibilities for owning a reference to an object. We can own a strong reference

to an object: as long as we keep this reference, the object is not destroyed. Or we can own a

weak reference to the object: the object can be destroyed if nobody owns a strong reference to

it, in which case the weak reference becomes invalid.

An object is destroyed as soon as the last strong reference to it is released. At the same tine,

all weak references (if any) are automatically set to point to NULL.

In VMime, these two types of references are known as vmime::shared ptr and

vmime::weak ptr, respectively.

note: since November 2013, we switched from an old, intrusive implementation of smart

pointers to a more standard one: either Boost shared ptr<> implementation or standard

C++ one if we are compiling in C++11. Here are the changes:

vmime::ref <> is replaced with vmime::shared ptr <>

vmime::weak ref <> is replaced with vmime::weak ptr <>

vmime::create <> is replaced with vmime::make shared <>

1Ressource Allocation is Initialisation

15

4.1.2 Instanciating reference-counted objects

In VMime, all objects that support reference counting inherit from the vmime::object class,

which is responsible for incrementing/decrementing the counter and managing the object’s life

cycle. If you want to create a smart pointer to a new object instance, you should use the function

vmime::make shared instead of the new operator.

class myObject : public vmime: : object

{
public :

myObject(const vmime: : string& name)

: m name(name)

{
}

void sayHello()

{
std : : cout << ”Hello ” << m name << std : : endl ;

}

private :

vmime: : string m name;

};

int main()

{
vmime: : shared ptr <myObject> obj =

vmime: : make shared <myObject>(”world”) ;

obj−>sayHello () ;

return 0;

} // Here, ’ obj ’ gets automatically destroyed

Listing 4.1: Smarts pointers and creating objects

4.1.3 Using smart pointers

Smart pointers are copiable, assignable and comparable. You can use them like you would use

normal (”raw”) C++ pointers (eg. you can write !ptr, ptr != NULL, ptr−>method(), ∗ptr...).

16

Type safety is also guaranteed, and you can type cast smart pointers us-

ing the static cast(), dynamic cast() and const cast() equivalents on

vmime::shared ptr and vmime::weak ptr objects:

class myBase : public vmime: : object { }
class myObject : public myBase { }

vmime: : shared ptr <myObject> obj = vmime: : make shared <myObject>();

// Implicit downcast

vmime: : shared ptr <myBase> base = obj ;

// Explicit upcast

vmime: : shared ptr <myObject> obj2 = vmime: :dynamicCast <myObject>(base) ;

Listing 4.2: Casting smart pointers

Weak references are used to resolve reference cycles (an object which refers directly or indi-

rectly to itself). The following example illustrates a typical problem of reference counting:

class parent : public vmime: : object

{
public :

void createChild(vmime: : shared ptr <child> c)

{
m child = c ;

}

private :

vmime: : shared ptr <child> m child ;

};

class child : public vmime: : object

{
public :

child(vmime: : shared ptr <parent> p)

: m parent(p)

{
}

private :

17

vmime: : shared ptr <parent> m parent;

};

int main()

{
vmime: : shared ptr <parent> p = vmime: : make shared <parent>();

vmime: : shared ptr <child> c = vmime: : make shared <child>();

p−>setChild(c) ;

}

In this example, neither p nor c will be deleted when exiting main(). That’s because p
indirectly points to itself via c, and vice versa. The solution is to use a weak reference to the

parent:

vmime: : weak ptr <parent> m parent;

The decision to make the parent or the child a weak reference is purely semantic, and it

depends on the context and the relationships between the objects. Note that when the parent

is deleted, the m parent member of the child points to NULL.

More information about reference counting can be found on Wikipedia2.

4.2 Error handling

In VMime, error handling is exclusively based on exceptions, there is no error codes, or things

like that.

VMime code may throw exceptions in many different situations: an unexpected error oc-

curred, an operation is not supported, etc. You should catch them if you want to report failures

to the user. This is also useful when debugging your program.

VMime exceptions support chaining: an exception can be encapsulated into another excep-

tion to hide implementation details. The function exception::other() returns the next

exception in the chain, or NULL.

Following is an example code for catching VMime exceptions and writing error messages to

the console:

std : : ostream& operator<<(std : : ostream& os , const vmime: : exception& e)

{
os << ”∗ vmime: : exceptions : : ” << e .name() << std : : endl ;

os << ” what = ” << e .what() << std : : endl ;

2http://en.wikipedia.org/wiki/Reference counting

18

// Recursively print a l l encapsuled exceptions

i f (e . other() != NULL)

os << ∗e . other () ;

return os ;

}

. . .

try

{
// . . . some cal l to VMime. . .

}
catch (vmime: : exception& e)

{
std : : cerr << e ; // VMime exception

}
catch (std : : exception& e)

{
std : : cerr << e .what() ; // standard exception

}

Listing 4.3: Catching VMime exceptions

Read the source of example6 if yo want to see a more complete example of using

VMime exceptions (such as getting more detailed information by using specialized classes of

vmime::exception).

4.3 Basic objects

4.3.1 The component class

In VMime, all the components of a message inherit from the same class component. This

includes the message itself (classes message and bodyPart), the header, the header fields and

the value of each header field, the body and all the parts in the message.

The class component provide a common interface for parsing or generating all these com-

ponents (methods parse() and generate()). It also provides additional functions to get

some information about the parsing process or the structure (methods getParsedOffset(),

getParsedLength() and getChildComponents()).

VMime also provides a set of classes corresponding to the basic types found in a message;

for example a mailbox, a mailbox list, date/time information, media type, etc. They all inherit

from component too.

19

4.3.2 Date and time

Date and time are used in several places in VMime, particularly in header fields (Date, Re-

ceived, ...). VMime fully supports RFC-2822’s date and time specification. The object

vmime::datetime is used to manipulate date and time information, and to parse/generate it

from/to RFC-2822 format.

The following code snippet show various manners of using the vmime::datetime object:

// Creating from string in RFC−2822 format

vmime: : datetime d1(”Sat , 08 Oct 2005 14:07:52 +0200”) ;

// Creating from components

vmime: : datetime d2(

/∗ date ∗/ 2005, vmime: : datetime : :OCTOBER, 8,

/∗ time ∗/ 14, 7 , 52,

/∗ zone ∗/ vmime: : datetime : :GMT2);

// Getting day of week

const int dow = d2.getWeekDay() ; // ’dow’ should be datetime : :SATURDAY

Listing 4.4: Using vmime::datetime object

4.3.3 Media type

In MIME, the nature of the data contained in parts is identified using a media type. A gen-

eral type (eg. image) and a sub-type (eg. jpeg) are put together to form a media type (eg.

image/jpeg). This is also called the MIME type.

There are a lot of media types officially registered, and vendor-specific types are possible

(they start with “x-”, eg. application/x-zip-compressed).

In VMime, the object vmime::mediaType represents a media type. There are also some

constants for top-level types and sub-types in the vmime::mediaTypes namespace. For ex-

ample, you can instanciate a new media type with:

vmime: :mediaType theType(

/∗ top−l eve l type ∗/ vmime: :mediaTypes : :IMAGE,

/∗ sub−type ∗/ vmime: :mediaTypes : :IMAGEJPEG);

// theType.getType() is ”image”

// theType.getSubType() is ”jpeg”

// theType. generate() returns ”image/jpeg”

20

For more information about media types, see RFC-20463.

4.3.4 Mailbox and mailbox groups

VMime provides several objects for working with mailboxes and addresses.

The vmime::address class is an abstract type for representing an address: it can be either

a mailbox (type vmime::mailbox) or a mailbox group (type vmime::mailboxGroup). A

mailbox is composed of an email address (mandatory) and possibly a name. A mailbox group

is simply a named list of mailboxes (see Figure 4.1).

vmime: : shared ptr <vmime: : mailbox> mbox1 = vmime: : make shared <vmime: : mailbox>

(/∗ name ∗/ vmime: : text(”John Doe”) , /∗ email ∗/ ”john .doe@acme.com”);

vmime: : shared ptr <vmime: : mailbox> mbox2 = vmime: : make shared <vmime: : mailbox>

(/∗ no name, email only ∗/ ”bill@acme.com”);

vmime: : shared ptr <vmime: :mailboxGroup> grp = vmime: : make shared <vmime: :mailboxGroup>();

grp−>appendMailbox(mbox1) ;

grp−>appendMailbox(mbox2) ;

Listing 4.5: Using mailboxes and mailbox groups

Figure 4.1: Diagram for address-related classes

3http://www.faqs.org/rfcs/rfc2046.html

21

Figure 4.2: Overall structure of MIME messages

4.4 Message, body parts and header

4.4.1 Introduction to MIME messages

A MIME message is a recursive structure in which each part can contains one or more parts (or

entities). Each part is composed of a header and a body (actual contents). Figure 4.2 shows

how this model is implemented in VMime, and all classes that take part in it.

22

4.4.2 Header and header fields

4.4.2.1 Standard header fields

Header fields carry information about a message (or a part) and its contents. Each header

field has a name and a value. All types that can be used as a field value inherit from the

headerFieldValue class.

You cannot instanciate header fields directly using their constructor. Instead, you should use

the headerFieldFactory object. This ensures the right field type and value type is used for

the specified field name. For more information about how to use header fields and the factory,

see section 5.2.1.

Some standard fields are officially registered and have their value type specified in a RFC.

Table 4.4.2.1 lists all the fields registered by default in VMime and the value type they contains.

By default, all unregistered fields have a value of type text.

Field Name Value Type

From mailbox

To addressList

Cc addressList

Bcc addressList

Sender mailbox

Date datetime

Received relay

Subject text

Reply-To mailbox

Delivered-To mailbox

Organization text

Return-Path path

Mime-Version text

Content-Type mediaType

Content-Transfer-Encoding encoding

Content-Description text

Content-Disposition contentDisposition

Content-Id messageId

Content-Location text

Message-Id messageId

In-Reply-To messageIdSequence

References messageIdSequence

Original-Message-Id messageId

Disposition disposition

Disposition-Notification-To mailboxList

Table 4.1: Standard fields and their types

23

4.4.2.2 Parameterized fields

In addition to a value, some header fields can contain one or more name=value couples which are

called parameters. For example, this is used in the Content-Type field to give more information

about the content:

Content-Type: text/plain; charset="utf-8"

Fields that support parameters inherit from the parameterizedHeaderField
class which provides methods to deal with these parameters: appendParameter(),

getParameterAt()...

A parameter is identified by a name (eg. charset) and associated to a value of type

vmime::text. Parameters provide helper functions to convert automatically from basic types

to text, and vice versa. The following example illustrates it:

vmime: : shared ptr <vmime: : parameterizedField> f ie ld =

header−>findField <vmime: : parameterizedField>(”X−Field−That−Contains−Parameters”) ;

// Use setValue() to convert from a basic type to ’ text ’

vmime: : shared ptr <vmime: : parameter> prm = field−>getParameter(”my−date−param”);

prm−>setValue(vmime: : datetime : :now()) ;

// Use getValueAs() to convert from ’ text ’ to a basic type

prm = field−>getParameter(”my−charset−param”);

const vmime: : charset ch = prm−>getValueAs <vmime: : charset>();

Listing 4.6: Getting and setting parameter value in fields

Some fields provide easy access to their standard parameters (see Table 4.4.2.2). This avoids

finding the parameter and dynamic-casting its value to the right type. The following code

illustrates how to use it:

vmime: : shared ptr <vmime: : contentTypeField> f ie ld =

header−>getField <vmime: : contentTypeField>(vmime: : f ie lds : :CONTENTTYPE);

// 1. First solution : the ”hard” way

vmime: : shared ptr <vmime: : parameter> prm = field−>findParameter(”charset”) ;

const charset ch1 = prm−>getValueAs <vmime: : charset>();

// 2. Second solution : the simple way

const charset ch2 = field−>getCharset () ;

note: In both cases, an exception no such parameter can be thrown if the parameter

does not exist, so be sure to catch it.

24

Field Name Field Type Parameters

Content-Type contentTypeField boundary, charset, report-

type

Content-Disposition contentDispositionField creation-date, modification-

date, read-date, filename, size

Table 4.2: Standard parameterized fields

4.5 Streams

4.5.1 Streams and stream adapters

Streams permit reading or writing data whatever the underlying system is: a file on a hard disk,

a socket connected to a remote service...

There are two types of streams: input streams (from which you can read data) and output

streams (in which you can write data). Some adapters are provided for compatibility and

convenience, for example:

• inputStreamAdapter and outputStreamAdapter: allow to use standard C++

iostreams with VMime;

• inputStreamStringAdapter and outputStreamStringAdapter: use a

vmime::string object to read/write data.

The following example shows two ways of writing the current date to the standard output,

using stream adapters:

// Get current date and time

const vmime: : datetime date = vmime: : datetime : :now() ;

// 1. Using outputStreamAdapter

vmime: : uti l ity : : outputStreamAdapter out(std : : cout) ;

std : : cout << ”Current date is : ” ;

date . generate(out) ;

std : : cout << std : : endl ;

// 2. Using outputStreamStringAdapter

vmime: : string dateStr ;

vmime: : uti l ity : : outputStreamStringAdapter outStr(dateStr) ;

date . generate(outStr) ;

25

std : : cout << ”Current date is : ” << dateStr << std : : endl ;

Listing 4.7: Using stream adapters

4.5.2 Stream filters

Input and output streams can be filtered to perform inline conver-

sions (for example, there is a filter to convert “\r\n” sequences to

“\n”). They inherit from vmime::utility::filteredInputStream or

vmime::utility::filteredOutputStream and are used like adapters (some filters

also accept parameters; read the documentation).

The most useful filter in VMime (and probably the only one you will need) is the

charsetFilteredOutputStream, which performs inline conversion of charsets. See 4.7 to

know how to use it.

note: After you have finished to use a filtered output stream, it is important to call flush()
on it to flush the internal buffer. If flush() is not called, not all data may be written to the

underlying stream.

4.6 Content handlers

4.6.1 Introduction

Content handlers are an abstraction for data sources. They are currently used when some data

need to be stored for later use (eg. body part contents, attachment data, ...). Data can be

stored encoded or unencoded (for more information about encodings, see 4.9).

4.6.2 Extracting data from content handlers

You can extract data in a content handler using the extract() method (which automati-

cally decodes data if encoded) or extractRaw() (which extracts data without perfoming any

decoding).

The following example shows how to extract the body text from a message, and writing it

to the standard output with charset conversion:

// Suppose we already have a message

vmime: : shared ptr <vmime: : message> msg;

// Obtains a reference to the body contents

vmime: : shared ptr <vmime: :body> body = msg−>getBody() ;

vmime: : shared ptr <vmime: : contentHandler> cts = body−>getContents () ;

26

vmime: : uti l ity : : outputStreamAdapter out(std : : cout) ;

cts−>extract(out) ;

Listing 4.8: Using content handlers to extract body text from a message

note: The body contents is extracted “as is”. No charset conversion is performed. See 4.7

to know more about conversion between charsets.

4.6.3 Creating content handlers

When you are building a message, you may need to instanciate content handlers if you want to

set the contents of a body part. The following code snippet shows how to set the body text of

a part from a string:

vmime: : shared ptr <vmime: : bodyPart> part ; // suppose we have a body part

// Create a new content handler from a string

vmime: : shared ptr <vmime: : contentHandler> cth =

vmime: : make shared <vmime: : stringContentHandler>(”Put body contents here”) ;

// Set the contents

part−>getBody()−>setContents(cth) ;

Listing 4.9: Setting the contents of a body part

Content handlers are also used when creating attachments. The following example illustrates

how to create an attachment from a file:

// Create a stream from a f i l e

std : : ifstream∗ fileStream = new std : : ifstream () ;

fileStream−>open(”/home/vincent/paris . jpg” , std : : ios : : binary) ;

i f (!∗ fileStream)

// handle error

vmime: : shared ptr <uti l ity : : stream> dataStream =

vmime: : make shared <vmime: : uti l ity : : inputStreamPointerAdapter>(fileStream);

// NOTE: ’ fileStream ’ wi l l be automatically deleted

// when ’dataStream ’ is deleted

// Create a new content handler

vmime: : shared ptr <contentHandler> data =

27

vmime: : make shared <vmime: : streamContentHandler>(dataStream, 0);

// Now create the attachment

ref <vmime: : attachment> att = vmime: : make shared <vmime: : defaultAttachment>

(

/∗ attachment data ∗/ data ,

/∗ content type ∗/ vmime: :mediaType(”image/jpeg”) ,

/∗ description ∗/ vmime: : text(”Holiday photo”) ,

/∗ filename ∗/ vmime: :word(”paris . jpg”)

) ;

Listing 4.10: Creating an attachment from a file

You will see later that the vmime::fileAttachment class already encapsulates all the

mechanics to create an attachment from a file.

4.7 Character sets, charsets and conversions

Quoting from RFC-2278: “ The term ’charset’ is used to refer to a method of converting a

sequence of octets into a sequence of characters.”

With the vmime::charset object, VMime supports conversion between charsets using

the iconv library, which is available on almost all existing platforms. See vmime::charset
and vmime::charsetConverter in the class documentation to know more about charset

conversion.

The following example shows how to convert data in one charset to another charset. The

data is extracted from the body of a message and converted to UTF-8 charset:

vmime: : shared ptr <vmime: : message> msg; // we have a message

// Obtain the content handler f i r s t

vmime: : shared ptr <vmime: :body> body = msg−>getBody() ;

vmime: : shared ptr <const vmime: : contentHandler> cth = body−>getContents () ;

// Then, extract and convert the contents

vmime: : uti l ity : : outputStreamAdapter out(std : : cout) ;

vmime: : uti l ity : : charsetFilteredOutputStream fout

(/∗ source charset ∗/ body−>getCharset() ,

/∗ dest charset ∗/ vmime: : charset(”utf−8”) ,

/∗ dest stream ∗/ out) ;

cth−>extract(fout) ;

28

fout . flush () ; // Very important !

Listing 4.11: Extracting and converting body contents to a specified charset

4.8 Non-ASCII text in header fields

MIME standard defines methods4 for dealing with data which is not 7-bit only (ie. the ASCII

character set), in particular in header fields. For example, the field “Subject:” use this data

type.

VMime is fully compatible with RFC-2047 and provides two objects for manipulating 8-bit

data: vmime::text and vmime::word. A word represents textual information encoded in a

specified charset. A text is composed of one or more words.

RFC-2047 describes the process of encoding 8-bit data into a 7-bit form; basically, it relies

on Base64 and Quoted-Printable encoding. Hopefully, all the encoding/decoding process is done

internally by VMime, so creating text objects is fairly simple:

vmime: : string inText = ”Linux dans un tÃ c©lÃ c©phone mobile” ;

vmime: : charset inCharset = ”utf−8”;

vmime: : text outText;

outText. createFromString(inText , inCharset) ;

// ’outText ’ now contains 3 words:

// . <us−ascii> ”Linux dans un ”

// . <utf−8> ”tÃ c©lÃ c©phone ”

// . <us−ascii> ”mobile”

vmime: : shared ptr <vmime: : header> header = myMessage−>getHeader() ;

header−>Subject()−>setValue(outText) ;

Listing 4.12: Creating vmime::text objects

In general, you will not need to decode RFC-2047-encoded data as the pro-

cess is totally transparent in VMime. If you really have to, you can use the

vmime::text::decodeAndUnfold() static method to create a text object from encoded

data.

For example, say you have the following encoded data:

Linux dans un =?UTF-8?B?dMOpbMOpcGhvbmUgbW9iaWxl?=

4See RFC-2047: Message Header Extensions for Non-ASCII Text

29

You can simply decode it using the following code:

vmime: : string inData =

”Linux dans un =?UTF−8?B?dMOpbMOpcGhvbmUgbW9iaWxl?=”;

vmime: : text outText;

vmime: : text : : decodeAndUnfold(inData, &outText) ;

Listing 4.13: Decoding RFC-2047-encoded data

vmime::text also provides a function to convert all the words to another charset in a single

call. The following example shows how to convert text stored in the Subject field of a message:

vmime: : shared ptr <vmime: : message> msg; // we have a message

vmime: : text subject = msg−>getHeader()−>Subject()−>getValue() ;

const vmime: : string subjectText =

subject .getConvertedText(vmime: : charset(”utf−8”)) ;

// ’ subjectText ’ now contains the subject in UTF−8 encoding

Listing 4.14: Converting data in a vmime::text to a specified charset

4.9 Encodings

4.9.1 Introduction

The MIME standard defines a certain number of encodings to allow data to be safely trans-

mitted from one peer to another. VMime provides data encoding and decoding using the

vmime::utility::encoder::encoder object.

You should not need to use encoders directly, as all encoding/decoding process is handled

internally by the library, but it is good to know they exist and how they work.

4.9.2 Using encoders

You can create an instance of an encoder using the ’vmime::utility::encoder::encoderFactory’

object, giving the encoding name (base64, quoted-printable, ...). The following example creates

an instance of the Base64 encoder to encode some data:

vmime: : shared ptr <vmime: : uti l ity : : encoder : : encoder> enc =

vmime: : uti l ity : : encoder : : encoderFactory : : getInstance()−>create(”base64”) ;

30

vmime: : string inString(”Some data to encode”) ;

vmime: : uti l ity : : inputStreamStringAdapter in(inString) ;

vmime: : string outString ;

vmime: : uti l ity : : outputStreamStringAdapter out(outString) ;

enc−>encode(in , out) ;

std : : cout << ”Encoded data is :” << outString << std : : endl ;

Listing 4.15: A simple example of using an encoder

4.9.3 Enumerating available encoders

The behaviour of the encoders can be configured using properties. However, not all encoders

support properties. The following example5 enumerates available encoders and the supported

properties for each of them:

vmime: : shared ptr <vmime: : uti l ity : : encoder : : encoderFactory> ef =

vmime: : uti l ity : : encoder : : encoderFactory : : getInstance () ;

std : : cout << ”Available encoders :” << std : : endl ;

for (int i = 0 ; i < ef−>getEncoderCount() ; ++i)

{
// Output encoder name

vmime: : shared ptr <const vmime: : uti l ity : : encoder : : encoderFactory : : registeredEncoder>

enc = ef−>getEncoderAt(i) ;

std : : cout << ” ∗ ” << enc−>getName() << std : : endl ;

// Create an instance of the encoder to get i t s properties

vmime: : shared ptr <vmime: : uti l ity : : encoder : : encoder> e = enc−>create () ;

std : : vector <vmime: : string> props = e−>getAvailableProperties () ;

std : : vector <vmime: : string>:: const iterator i t ;

for (i t = props . begin() ; i t != props .end() ; ++it)

5This is an excerpt from example6

31

std : : cout << ” − ” << ∗ i t << std : : endl ;

Listing 4.16: Enumerating encoders and their properties

4.10 Progress listeners

Progress listeners are used with objects that can notify you about the state of progress when

they are performing an operation.

The vmime::utility::progressListener interface is rather simple:

void start (const int predictedTotal) ;

void progress(const int current , const int currentTotal) ;

void stop(const int total) ;

start() and stop() are called at the beginning and the end of the operation, respectively.

progress() is called each time the status of progress changes (eg. a chunk of data has been

processed). There is no unit specified for the values passed in argument. It depends on the

notifier: it can be bytes, percent, number of messages...

32

Chapter 5

Parsing and Building Messages

5.1 Parsing messages

5.1.1 Introduction

Parsing is the process of creating a structured representation (for example, a hierarchy of C++

objects) of a message from its “textual” representation (the raw data that is actually sent on

the Internet).

For example, say you have the following email in a file called ”hello.eml”:

Date: Thu, Oct 13 2005 15:22:46 +0200
From: Vincent <vincent@vmime.org>
To: you@vmime.org
Subject: Hello from VMime!

A simple message to test VMime

The following code snippet shows how you can easily obtain a vmime::message object

from data in this file:

// Read data from f i l e

std : : ifstream f i l e ;

f i l e .open(”hello .eml” , std : : ios : : in | std : : ios : : binary) ;

vmime: : uti l ity : : inputStreamAdapter is (f i l e) ;

vmime: : string data ;

vmime: : uti l ity : : outputStreamStringAdapter os(data) ;

vmime: : uti l ity : : bufferedStreamCopy(is , os) ;

33

// Actually parse the message

vmime: : shared ptr <vmime: : message> msg = vmime: : make shared <vmime: : message>();

msg−>parse(data) ;

vmime: : shared ptr <vmime: : header> hdr = msg−>getHeader() ;

vmime: : shared ptr <vmime: :body> bdy = msg−>getBody() ;

// Now, you can extract some of i t s components

vmime: : charset ch(vmime: : charsets : :UTF 8);

std : : cout

<< ”The subject of the message is : ”

<< hdr−>Subject()−>getValue <vmime: : text>()−>getConvertedText(ch)

<< std : : endl

<< ”It was sent by: ”

<< hdr−>From()−>getValue <vmime: : mailbox>()−>getName() .getConvertedText(ch)

<< ” (email : ” << hdr−>From()−>getValue <vmime: : mailbox>()−>getEmail() << ”)”

<< std : : endl ;

Listing 5.1: Parsing a message from a file

The output of this program is:

The subject of the message is: Hello from VMime!
It was sent by: Vincent (email: vincent@vmime.org)

5.1.2 Using the vmime::messageParser object

The vmime::messageParser object allows to parse messages in a more simple manner. You

can obtain all the text parts and attachments as well as basic fields (expeditor, recipients,

subject...), without dealing with MIME message structure.

// Read data from f i l e

std : : ifstream f i l e ;

f i l e .open(”hello .eml” , std : : ios : : in | std : : ios : : binary) ;

vmime: : uti l ity : : inputStreamAdapter is (f i l e) ;

vmime: : string data ;

vmime: : uti l ity : : outputStreamStringAdapter os(data) ;

vmime: : uti l ity : : bufferedStreamCopy(is , os) ;

34

// Actually parse the message

vmime: : shared ptr <vmime: : message> msg = vmime: : make shared <vmime: : message>();

msg−>parse(data) ;

// Here start the differences with the previous example

vmime: : messageParser mp(msg) ;

// Output information about attachments

std : : cout << ”Message has ” << mp.getAttachmentCount()

<< ” attachment(s)” << std : : endl ;

for (int i = 0 ; i < mp.getAttachmentCount() ; ++i)

{
vmime: : shared ptr <const vmime: : attachment> att = mp.getAttachmentAt(i) ;

std : : cout << ” − ” << att−>getType() . generate() << std : : endl ;

}

// Output information about text parts

std : : cout << ”Message has ” << mp.getTextPartCount()

<< ” text part(s)” << std : : endl ;

for (int i = 0 ; i < mp.getTextPartCount() ; ++i)

{
vmime: : shared ptr <const vmime: : textPart> tp = mp.getTextPartAt(i) ;

// text/html

i f (tp−>getType() .getSubType() == vmime: :mediaTypes : :TEXTHTML)

{
vmime: : shared ptr <const vmime: : htmlTextPart> htp =

vmime: :dynamicCast <const vmime: : htmlTextPart>(tp) ;

// HTML text is in tp−>getText()

// Plain text is in tp−>getPlainText()

// Enumerate embedded objects

for (int j = 0 ; j < htp−>getObjectCount() ; ++j)

{
vmime: : shared ptr <const vmime: : htmlTextPart : : embeddedObject> obj =

htp−>getObjectAt(j) ;

// Identifier (Content−Id or Content−Location) is obj−>getId ()

// Object data is in obj−>getData()

}
}
// text/plain or anything else

else

35

{
// Text is in tp−>getText()

}
}

Listing 5.2: Using vmime::messageParser to parse more complex messages

5.2 Building messages

5.2.1 A simple message

Of course, you can build a MIME message from scratch by creating the various objects that

compose it (parts, fields, etc.). The following is an example of how to achieve it:

vmime: : shared ptr <vmime: : message> msg = vmime: : make shared <vmime: : message>();

vmime: : shared ptr <vmime: : header> hdr = msg−>getHeader() ;

vmime: : shared ptr <vmime: :body> bdy = msg−>getBody() ;

vmime: : shared ptr <vmime: : headerFieldFactory> hfFactory =

vmime: : headerFieldFactory : : getInstance () ;

// Append a ’Date: ’ f i e ld

vmime: : shared ptr <vmime: : headerField> dateField =

hfFactory−>create(vmime: : f ie lds : :DATE);

dateField−>setValue(vmime: : datetime : :now()) ;

hdr−>appendField(dateField) ;

// Append a ’Subject : ’ f i e ld

vmime: : shared ptr <vmime: : headerField> subjectField =

hfFactory−>create(vmime: : f ie lds : :SUBJECT);

subjectField−>setValue(vmime: : text(”Message subject”)) ;

hdr−>appendField(subjectField) ;

// Append a ’From: ’ f i e ld

vmime: : shared ptr <vmime: : headerField> fromField =

hfFactory−>create(vmime: : f ie lds : :FROM);

fromField−>setValue

(vmime: : make shared <vmime: : mailbox>(”me@vmime. org”)) ;

hdr−>appendField(fromField) ;

36

// Append a ’To: ’ f i e ld

vmime: : shared ptr <vmime: : headerField> toField =

hfFactory−>create(vmime: : f ie lds : :TO);

vmime: : shared ptr <vmime: : mailboxList> recipients =

vmime: : make shared <vmime: : mailboxList>();

recipients−>appendMailbox

(vmime: : make shared <vmime: : mailbox>(”you@vmime. org”)) ;

toField−>setValue(recipients) ;

hdr−>appendField(toField) ;

// Set the body contents

bdy−>setContents(vmime: : make shared <vmime: : stringContentHandler>

(”This is the text of your message . . . ”)) ;

// Output raw message data to standard output

vmime: : uti l ity : : outputStreamAdapter out(std : : cout) ;

msg−>generate(out) ;

Listing 5.3: Building a simple message from scratch

As you can see, this is a little fastidious. Hopefully, VMime also offers a more simple way

for creating messages. The vmime::messageBuilder object can create basic messages that

you can then customize.

The following code can be used to build exactly the same message as in the previous example,

using the vmime::messageBuilder object:

try

{
vmime: : messageBuilder mb;

// Fi l l in some header f ie lds and message body

mb. setSubject(vmime: : text(”Message subject”)) ;

mb. setExpeditor(vmime: : mailbox(”me@vmime. org”)) ;

mb. getRecipients () .appendAddress

(vmime: : make shared <vmime: : mailbox>(”you@vmime. org”)) ;

mb.getTextPart()−>setCharset(vmime: : charsets : : ISO8859 15) ;

mb.getTextPart()−>setText(vmime: : make shared <vmime: : stringContentHandler>

(”This is the text of your message . . . ”)) ;

// Message construction

vmime: : shared ptr <vmime: : message> msg = mb. construct () ;

37

// Output raw message data to standard output

vmime: : uti l ity : : outputStreamAdapter out(std : : cout) ;

msg−>generate(out) ;

}
// VMime exception

catch (vmime: : exception& e)

{
std : : cerr << ”vmime: : exception : ” << e .what() << std : : endl ;

}
// Standard exception

catch (std : : exception& e)

{
std : : cerr << ”std : : exception : ” << e .what() << std : : endl ;

}

Listing 5.4: Building a simple message using vmime::messageBuilder

5.2.2 Adding an attachment

Dealing with attachments is quite simple. Add the following code to the previous example to

attach a file to the message:

// Create an attachment

vmime: : shared ptr <vmime: : fileAttachment> att =

vmime: : make shared <vmime: : fileAttachment>

(

/∗ f u l l path to f i l e ∗/ ”/home/vincent/paris . jpg” ,

/∗ content type ∗/ vmime: :mediaType(”image/jpeg) ,

/∗ description ∗/ vmime: : text(”My holidays in Paris”)

) ;

// You can also set some infos about the f i l e

att−>getFileInfo () . setFilename(”paris . jpg”) ;

att−>getFileInfo () . setCreationDate

(vmime: : datetime(”30 Apr 2003 14:30:00 +0200”)) ;

// Add this attachment to the message

mb.appendAttachment(att) ;

Listing 5.5: Building a message with an attachment using vmime::messageBuilder

38

5.2.3 HTML messages and embedded objects

VMime also supports aggregate messages, which permits to build MIME messages containing

HTML text and embedded objects (such as images). For more information about aggregate mes-

sages, please read RFC-2557 (MIME Encapsulation of Aggregate Documents, such as HTML).

Creating such messages is quite easy, using the vmime::messageBuilder object. The

following code constructs a message containing text in both plain and HTML format, and a

JPEG image:

// Fi l l in some header f ie lds

mb. setSubject(vmime: : text(”An HTML message”)) ;

mb. setExpeditor(vmime: : mailbox(”me@vmime. org”)) ;

mb. getRecipients () .appendAddress

(vmime: : make shared <vmime: : mailbox>(”you@vmime. org”)) ;

// Set the content−type to ”text/html”: a text part factory must be

// available for the type you are using . The following code wi l l make

// the message builder construct the two text parts .

mb.constructTextPart(vmime: :mediaType

(vmime: :mediaTypes : :TEXT, vmime: :mediaTypes : :TEXTHTML));

// Set contents of the text parts ; the message is available in two formats :

// HTML and plain text . The HTML format also includes an embedded image.

vmime: : shared ptr <vmime: : htmlTextPart> textPart =

vmime: :dynamicCast <vmime: : htmlTextPart>(mb.getTextPart()) ;

// −− Add the JPEG image (the returned identi f ier is used to identify the

// −− embedded object in the HTML text , the famous ”CID”, or ”Content−Id”).

// −− Note: you can also read data from a f i l e ; see the next example .

const vmime: : string id = textPart−>addObject(”<...image data...>” ,

vmime: :mediaType(vmime: :mediaTypes : :IMAGE, vmime: :mediaTypes : :IMAGEJPEG));

// −− Set the text

textPart−>setCharset(vmime: : charsets : : ISO8859 15) ;

textPart−>setText(vmime: : make shared <vmime: : stringContentHandler>

(”This is the HTML text, and the image:
”

””)) ;

textPart−>setPlainText(vmime: : make shared <vmime: : stringContentHandler>

(”This is the plain text .”)) ;

Listing 5.6: Building an HTML message with an embedded image using the

vmime::messageBuilder

39

This will create a message having the following structure:

multipart/alternative
text/plain
multipart/related

text/html
image/jpeg

You can easily tell VMime to read the embedded object data from a file. The following code

opens the file /path/to/image.jpg, connects it to an input stream, then add an embedded object:

vmime: : uti l ity : : fileSystemFactory∗ fs =

vmime: : platform : : getHandler()−>getFileSystemFactory () ;

vmime: : shared ptr <vmime: : uti l ity : : f i l e> imageFile =

fs−>create(fs−>stringToPath(”/path/to/image. jpg”)) ;

vmime: : shared ptr <vmime: : contentHandler> imageCts =

vmime: : make shared <vmime: : streamContentHandler>

(imageFile−>getFileReader()−>getInputStream() , imageFile−>getLength()) ;

const vmime: : string cid = textPart .addObject(imageCts,

vmime: :mediaType(vmime: :mediaTypes : :IMAGE, vmime: :mediaTypes : :IMAGEJPEG));

5.3 Working with attachments: the attachment helper

The attachmentHelper object allows listing all attachments in a message, as well as adding

new attachments, without using the messageParser and messageBuilders objects. It can

work directly on messages and body parts.

To use it, you do not need any knowledge about how attachment parts should be organized

in a MIME message.

The following code snippet tests if a body part is an attachment, and if so, extract its

contents to the standard output:

vmime: : shared ptr <vmime: : bodyPart> part ; // suppose we have a body part

i f (vmime: : attachmentHelper : : isBodyPartAnAttachment(part))

{
// The body part contains an attachment , get i t

vmime: : shared ptr <const vmime: : attachment> attach =

attachmentHelper : : getBodyPartAttachment(part) ;

40

// Extract attachment data to standard output

vmime: : uti l ity : : outputStreamAdapter out(std : : cout) ;

attach−>getData()−>extract(out) ;

}

Listing 5.7: Testing if a body part is an attachment

You can also easily extract all attachments from a message:

vmime: : shared ptr <vmime: : message> msg; // suppose we have a message

const std : : vector <ref <const attachment>> atts =

attachmentHelper : : findAttachmentsInMessage(msg) ;

Listing 5.8: Extracting all attachments from a message

Finally, the attachmentHelper object can be used to add an attachment to an existing

message, whatever it contains (text parts, attachments, ...). The algorithm can modify the

structure of the message if needed (eg. add a multipart/mixed part if no one exists in the

message). Simply call the addAttachment function:

vmime: : shared ptr <vmime: : message> msg; // suppose we have a message

// Create an attachment

vmime: : shared ptr <vmime: : fileAttachment> att =

vmime: : make shared <vmime: : fileAttachment>

(

/∗ f u l l path to f i l e ∗/ ”/home/vincent/paris . jpg” ,

/∗ content type ∗/ vmime: :mediaType(”image/jpeg) ,

/∗ description ∗/ vmime: : text(”My holidays in Paris”)

) ;

// Attach it to the message

vmime: : attachmentHelper : :addAttachment(msg, att) ;

Listing 5.9: Adding an attachment to an existing message

41

Chapter 6

Working with Messaging Services

6.1 Introduction

In addition to parsing and building MIME messages, VMime also offers a lot of features to work

with messaging services. This includes connecting to remote messaging stores (like IMAP or

POP3), local stores (maildir) and transport services (send messages over SMTP or local send-

mail), through an unified interface (see Figure 6.1). That means that you can use independently

IMAP of POP3 without having to change any line of code.

Source code of Example6 covers all features presented in this chapter, so it is important

you take some time to read it.

The interface is composed of five classes:

• vmime::net::service: this is the base interface for a messaging service. It can be

either a store service or a transport service.

• vmime::net::serviceFactory: create instances of a service. This is used internally

by the session object (see below).

• vmime::net::store: interface for a store service. A store service offers access to a set

of folders containing messages. This is used for IMAP, POP3 and maildir.

• vmime::net::transport: interface for a transport service. A transport service is

capable of sending messages. This is used for SMTP and sendmail.

• vmime::net::session: a session object is used to store the parameters used by a

service (eg. connection parameters). Each service instance is associated with only one

session. The session object is capable of creating instances of services.

The following classes are specific to store services:

• vmime::net::folder: a folder can either contain other folders or messages, or both.

42

Figure 6.1: Overall structure of the messaging module

43

• vmime::net::message: this is the interface for dealing with messages. For a given

message, you can have access to its flags, its MIME structure and you can also extract the

whole message data or given parts (if supported by the underlying protocol).

6.2 Working with sessions

6.2.1 Setting properties

Sessions are used to store configuration parameters for services. They contains a set of typed

properties that can modify the behaviour of the services. Before using a messaging service, you

must create and initialize a session object:

vmime: : shared ptr <vmime: : net : : session> theSession = vmime: : net : : session : : create () ;

Session properties include:

• connection parameters: host and port to connect to;

• authentication parameters: user credentials required to use the service (if any);

• protocol-specific parameters: enable or disable extensions (eg. APOP support in POP3).

Properties are stored using a dotted notation, to specify the service type, the protocol name,

the category and the name of the property:

{service_type}.{protocol}.category.name

An example of property is store.pop3.options.apop (used to enable or disable the use of APOP

authentication). The store.pop3 part is called the prefix. This allow specifying different values

for the same property depending on the protocol used.

The session properties are stored in a vmime::propertySet object. To set the value of a

property, you can use either:

theSession−>getProperties () . setProperty(”property−name” , value) ;

or:

theSession−>getProperties () [”property−name”] = value ;

44

6.2.2 Available properties

Following is a list of available properties and the protocols they apply to, as the time of writing

this documentation1. For better clarity, the prefixes do not appear in this table.

Property name Type Description P
O

P
3

P
O

P
3
S

IM
A

P

IM
A

P
S

S
M

T
P

S
M

T
P

S

m
a
il
d

ir

se
n

d
m

a
il

options.sasl bool Set to true to use SASL

authentication, if avail-

able.

• • • • • •

options.sasl.fallback bool Fail if SASL authen-

tication failed (do not

try other authentication

mechanisms).

• • • • • •

auth.username2 string Set the username of the

account to connect to.

• • • • • •

auth.password?? string Set the password of the

account.

• • • • • •

connection.tls bool Set to true to start a

secured connection using

STARTTLS extension, if

available.

• • •

connection.tls.required bool Fail if a secured connec-

tion cannot be started.

• • •

server.address string Server host name or IP

address.

• • • • • •

server.port int Server port. • • • • • •
server.rootpath string Root directory for mail

repository (eg. /home-

/vincent/Mail).

•

Table 6.1: Properties common to all protocols

1You can get an up-to-date list of the properties by running Example7

45

These are the protocol-specific options:

Property name Type Description

POP3, POP3S

store.pop3.options.apop bool Enable or disable authentication with

APOP (if SASL is enabled, this occurs

after all SASL mechanisms have been

tried).

store.pop3.options.apop.fallback bool If set to true and APOP fails, the au-

thentication process fails (ie. unsecure

plain text authentication is not used).

SMTP, SMTPS

transport.smtp.options.need-authentication bool Set to true if the server requires to au-

thenticate before sending messages.

transport.smtp.options.pipelining bool Set to false to disable command

pipelining, if the server supports it (de-

fault is true).

transport.smtp.options.chunking bool Set to false to disable CHUNKING

extension, if the server supports it (de-

fault is true).

sendmail

transport.sendmail.binpath string The path to the sendmail executable

on your system. The default is the one

found by the configuration script when

VMime was built.

Table 6.2: Protocol-specific options

6.2.3 Instanciating services

You can create a service either by specifying its protocol name, or by specifying the URL of the

service. Creation by name is deprecated so this chapter only presents the latter option.

The URL scheme for connecting to services is:

protocol://[username[:password]@]host[:port]/[root-path]

note: For local services (ie. sendmail and maildir), the host part is not used, but it must

not be empty (you can use ”localhost”).

The following table shows an example URL for each service:

46

Service Connection URL

imap, imaps imap://imap.example.com, imaps://vincent:pass@example.com

pop3, pop3s pop3://pop3.example.com

smtp, smtps smtp://smtp.example.com

maildir maildir://localhost/home/vincent/Mail (host not used)

sendmail sendmail://localhost (host not used, always localhost)

47

When you have the connection URL, instanciating the service is quite simple. Depending

on the type of service, you will use either getStore() or getTransport(). For example,

for store services, use:

vmime: : uti l ity : url url (”imap://user :pass@imap.example.com”);

vmime: : shared ptr <vmime: : net : : store> st = sess−>getStore(url) ;

and for transport services:

vmime: : uti l ity : url url (”smtp://smtp.example.com”);

vmime: : shared ptr <vmime: : net : : transport> tr = sess−>getTransport(url) ;

6.3 User credentials and authenticators

Some services need some user credentials (eg. username and password) to open a session.

In VMime, user credentials can be specified in the session properties or by using a custom

authenticator (callback).

vmime: : shared ptr <vmime: : net : : session> sess ; // Suppose we have a session

sess−>getProperties () [”store .imap.auth.username”] = ”vincent”;

sess−>getProperties () [”store .imap.auth.password”] = ”my−password”;

Listing 6.1: Setting user credentials using session properties

Although not recommended, you can also specify username and password directly in the con-

nection URL, ie: imap://username:password@imap.example.com/. This works only for services

requiring an username and a password as user credentials, and no other information.

Sometimes, it may not be very convenient to set username/password in the session properties,

or not possible (eg. extended SASL mechanisms) . That’s why VMime offers an alternate way of

getting user credentials: the authenticator object. Basically, an authenticator is an object

that can return user credentials on-demand (like a callback).

Currently, there are two types of authenticator in VMime: a basic authenticator (class

vmime::security::authenticator) and, if SASL support is enabled, a SASL authentica-

tor (class vmime::security::sasl::SASLAuthenticator). Usually, you should use the

default implementations, or at least make your own implementation inherit from them.

The following example shows how to use a custom authenticator to request the user to enter

her/his credentials:

class myAuthenticator : public vmime: : security : : defaultAuthenticator

{
const string getUsername() const

48

{
std : : cout << ”Enter your username: ” << std : : endl ;

vmime: : string res ;

std : : getline (std : : cin , res) ;

return res ;

}

const string getPassword() const

{
std : : cout << ”Enter your password: ” << std : : endl ;

vmime: : string res ;

std : : getline (std : : cin , res) ;

return res ;

}
};

Listing 6.2: A simple interactive authenticator

This is how to use it:

// First , create a session

vmime: : shared ptr <vmime: : net : : session> sess = vmime: : net : : session : : create () ;

// Next , in i t ia l i ze a service which wi l l use our authenticator

vmime: : shared ptr <vmime: : net : : store> st =

sess−>getStore(vmime: : uti l ity : : url (”imap://imap.example.com”) ,

/∗ use our authenticator ∗/ vmime: : make shared <myAuthenticator>());

note: An authenticator object should be used with one and only one service at a time. This

is required because the authentication process may need to retrieve the service name (SASL).

Of course, this example is quite simplified. For example, if several authentication mecha-

nisms are tried, the user may be requested to enter the same information multiple times. See

Example6 for a more complex implementation of an authenticator, with caching support.

If you want to use SASL (ie. if options.sasl is set to true), your au-

thenticator must inherit from vmime::security::sasl::SASLAuthenticator or

vmime::security::sasl::defaultSASLAuthenticator, even if you do not use the

SASL-specific methods getAcceptableMechanisms() and setSASLMechanism(). Have

a look at Example6 to see an implementation of an SASL authenticator.

class mySASLAuthenticator : public vmime: : security : : sasl : : defaultSASLAuthenticator

49

{
typedef vmime: : security : : sasl : :SASLMechanism mechanism;

// save us typing

const std : : vector <vmime: : shared ptr <mechanism>> getAcceptableMechanisms

(const std : : vector <vmime: : shared ptr <mechanism>>& available ,

vmime: : shared ptr <mechanism> suggested) const

{
// Here, you can sort the SASL mechanisms in the order they wi l l be

// tried . I f no SASL mechanism is acceptable (ie . for example , not

// enough secure) , you can return an empty l i s t .

//

// If you do not want to bother with this , you can simply return

// the default l i s t , which is ordered by security strength .

return defaultSASLAuthenticator : :

getAcceptableMechanisms(available , suggested) ;

}

void setSASLMechanism(vmime: : shared ptr <mechanism> mech)

{
// This is called when the authentication process is going to

// try the specified mechanism.

//

// The mechanism name is in mech−>getName()

defaultSASLAuthenticator : : setSASLMechanism(mech) ;

}

// . . . implement getUsername() and getPassword () . . .

};

Listing 6.3: A simple SASL authenticator

6.4 Using transport service

You have two possibilities for giving message data to the service when you want to send a

message:

• either you have a reference to a message (type vmime::message) and you can simply

call send(msg);

• or you only have raw message data (as a string, for example), and you have to call the

second overload of send(), which takes additional parameters (corresponding to message

envelope);

50

The following example illustrates the use of a transport service to send a message using the

second method:

const vmime: : string msgData =

”From: me@example. org \r\n”

”To: you@example. org \r\n”

”Date: Sun, Oct 30 2005 17:06:42 +0200 \r\n”

”Subject : Test \r\n”

”\r\n”

”Message body”;

// Create a new session

vmime: : uti l ity : : url url (”smtp://example.com”);

vmime: : shared ptr <vmime: : net : : session> sess = vmime: : net : : session : : create () ;

// Create an instance of the transport service

vmime: : shared ptr <vmime: : net : : transport> tr = sess−>getTransport(url) ;

// Connect i t

tr−>connect () ;

// Send the message

vmime: : uti l ity : : inputStreamStringAdapter is (msgData) ;

vmime: : mailbox from(”me@example. org”) ;

vmime: : mailboxList to ;

to .appendMailbox(vmime: : make shared <vmime: : mailbox>(”you@example. org”)) ;

tr−>send(

/∗ expeditor ∗/ from,

/∗ recipient (s) ∗/ to ,

/∗ data ∗/ is ,

/∗ total length ∗/ msgData. length ()) ;

// We have finished using the service

tr−>disconnect () ;

Listing 6.4: Using a transport service

note: Exceptions can be thrown at any time when using a service. For better clarity,

exceptions are not caught here, but be sure to catch them in your own application to provide

error feedback to the user.

If you use SMTP, you can enable authentication by setting some properties on the session

object (service::setProperty() is a shortcut for setting properties on the session with

51

the correct prefix):

tr−>setProperty(”options .need−authentication” , true) ;

tr−>setProperty(”auth.username” , ”user”) ;

tr−>setProperty(”auth.password” , ”password”) ;

6.5 Using store service

6.5.1 Connecting to a store

The first basic step for using a store service is to connect to it. The following example shows

how to initialize a session and instanciate the store service:

// Create a new session

vmime: : uti l ity : : url url (”imap://vincent :password@imap:example. org”) ;

vmime: : shared ptr <vmime: : net : : session> sess = vmime: : net : : session : : create () ;

// Create an instance of the transport service

vmime: : shared ptr <vmime: : net : : store> store = sess−>getStore(url) ;

// Connect i t

store−>connect () ;

Listing 6.5: Connecting to a store service

note: Example6 contains a more complete example for connecting to a store service, with

support for a custom authenticator.

6.5.2 Opening a folder

You can open a folder using two different access modes: either in read-only mode (where you

can only read message flags and contents), or in read-write mode (where you can read messages,

but also delete them or add new ones). When you have a reference to a folder, simply call the

open() method with the desired access mode:

folder−>open(vmime: : net : : folder : :MODEREADWRITE);

note: Not all stores support the read-write mode. By default, if the read-write mode is not

available, the folder silently fall backs on the read-only mode, unless the failIfModeIsNotAvailable

argument to open() is set to true.

52

Call getDefaultFolder() on the store to obtain a reference to the default folder, which

is usually the INBOX folder (where messages arrive when they are received).

You can also open a specific folder by specifying its path. The following example will open

a folder named bar, which is a child of foo in the root folder:

vmime: : net : : folder : : path path;

path /= vmime: : net : : folder : : path : : component(”foo”) ;

path /= vmime: : net : : folder : : path : : component(”bar”) ;

vmime: : shared ptr <vmime: : net : : folder> f ld = store−>getFolder(path) ;

fld−>open(vmime: : net : : folder : :MODEREADWRITE);

Listing 6.6: Opening a folder from its path

note: You can specify a path as a string as there is no way to get the separator used to

delimitate path components. Always use operator/= or appendComponent.

note: Path components are of type vmime::word, which means that VMime supports

folder names with extended characters, not only 7-bit US-ASCII. However, be careful that this

may not be supported by the underlying store protocol (IMAP supports it, because it uses

internally a modified UTF-7 encoding).

6.5.3 Fetching messages

You can fetch some information about a message without having to download the whole mes-

sage. Moreover, folders support fetching for multiple messages in a single request, for better

performance. The following items are currently available for fetching:

• envelope: sender, recipients, date and subject;

• structure: MIME structure of the message;

• content-info: content-type of the root part;

• flags: message flags;

• size: message size;

• header: retrieve all the header fields of a message;

• uid: unique identifier of a message;

• importance: fetch header fields suitable for use with misc::importanceHelper.

note: Not all services support all fetchable items. Call getFetchCapabilities() on a

folder to know which information can be fetched by a service.

53

The following code shows how to list all the messages in a folder, and retrieve basic infor-

mation to show them to the user:

std : : vector <ref <vmime: : net : : message>> allMessages =

folder−>getMessages(vmime: : net : : messageSet : :byNumber(1 , −1));

// −1 is a special value to mean ”the number of the last message in the folder”

folder−>fetchMessages(allMessages ,

vmime: : net : : fetchAttributes : :FLAGS |
vmime: : net : : fetchAttributes : :ENVELOPE);

for (unsigned int i = 0 ; i < allMessages . size () ; ++i)

{
vmime: : shared ptr <vmime: : net : : message> msg = allMessages [i] ;

const int flags = msg−>getFlags () ;

std : : cout << ”Message ” << i << ”:” << std : : endl ;

i f (flags & vmime: : net : : message : :FLAGSEEN)

std : : cout << ” − i s read” << std : : endl ;

i f (flags & vmime: : net : : message : :FLAGDELETED)

std : : cout << ” − i s deleted” << std : : endl ;

vmime: : shared ptr <const vmime: : header> hdr = msg−>getHeader() ;

std : : cout << ” − sent on ” << hdr−>Date()−>generate() << std : : endl ;

std : : cout << ” − sent by ” << hdr−>From()−>generate() << std : : endl ;

}

Listing 6.7: Fetching information about multiple messages

IMAP supports fetching specific header fields of a message. Here is how to use the

fetchAttributes object to do it:

// Fetch message f lags and the ”Received” and ”X−Mailer” header f ie lds

vmime: : net : : fetchAttributes fetchAttribs ;

fetchAttribs .add(vmime: : net : : fetchAttributes : :FLAGS);

fetchAttribs .add(”Received”) ;

fetchAttribs .add(”X−Mailer”) ;

folder−>fetchMessages(allMessages , fetchAttribs) ;

Listing 6.8: Using fetchAttributes object to fetch specific header fields of a message

54

6.5.4 Extracting messages and parts

To extract the whole contents of a message (including headers), use the extract() method

on a vmime::net::message object. The following example extracts the first message in the

default folder:

// Get a reference to the folder and to i t s f i r s t message

vmime: : shared ptr <vmime: : net : : folder> folder = store−>getDefaultFolder () ;

vmime: : shared ptr <vmime: : net : : message> msg = folder−>getMessage(1);

// Write the message contents to the standard output

vmime: : uti l ity : : outputStreamAdapter out(std : : cout) ;

msg−>extract(out) ;

Listing 6.9: Extracting messages

Some protocols (like IMAP) also support the extraction of specific MIME parts of a message

without downloading the whole message. This can save bandwidth and time. The method

extractPart() is used in this case:

// Fetching structure is required before extracting a part

folder−>fetchMessage(msg, vmime: : net : : fetchAttributes : :STRUCTURE);

// Now, we can extract the part

msg−>extractPart(msg−>getStructure()−>getPartAt(0)−>getPartAt(1));

Listing 6.10: Extracting a specific MIME part of a message

Suppose we have a message with the following structure:

multipart/mixed
text/html
image/jpeg [*]

The previous example will extract the header and body of the image/jpeg part.

6.5.5 Deleting messages

The following example will delete the second and the third message from the store.

vmime: : shared ptr <vmime: : net : : folder> folder = store−>getDefaultFolder () ;

folder−>deleteMessages(vmime: : net : : messageSet : :byNumber(/∗ from ∗/ 2, /∗ to ∗/ 3));

55

// This is equivalent

std : : vector <int> nums;

nums.push back(2);

nums.push back(3);

folder−>deleteMessages(vmime: : net : : messageSet : :byNumber(nums)) ;

// This is also equivalent (but wi l l require 2 roundtrips to server)

folder−>deleteMessages(vmime: : net : : messageSet : :byNumber(2));

folder−>deleteMessages(vmime: : net : : messageSet : :byNumber(2)); // renumbered, 3 becomes 2

Listing 6.11: Deleting messages

6.5.6 Events

As a result of executing some operation (or from time to time, even if no operation has been

performed), a store service can send events to notify you that something has changed (eg. the

number of messages in a folder). These events may allow you to update the user interface

associated to a message store.

Currently, there are three types of event:

• message change: sent when the number of messages in a folder has changed (ie. some

messages have been added or removed);

• message count change: sent when one or more message(s) have changed (eg. flags or

deleted status);

• folder change: sent when a folder has been created, renamed or deleted.

You can register a listener for each event type by using the corresponding methods on

a folder object: addMessageChangedListener(), addMessageCountListener() or

addFolderListener(). For more information, please read the class documentation for

vmime::net::events namespace.

6.6 Handling timeouts

Unexpected errors can occur while messaging services are performing operations and waiting a

response from the server (eg. server stops responding, network link falls down). As all operations

as synchronous, they can be “blocked” a long time before returning (in fact, they loop until they

either receive a response from the server, or the underlying socket system returns an error).

VMime provides a mechanism to control the duration of operations. This mechanism allows

the program to cancel an operation that is currently running.

An interface called timeoutHandler is provided:

56

class timeoutHandler : public object

{
/∗∗ Called to test i f the time limit has been reached .

∗
∗ @return true i f the timeout delay is elapsed

∗/
virtual const bool isTimeOut() = 0;

/∗∗ Called to reset the timeout counter .

∗/
virtual void resetTimeOut() = 0;

/∗∗ Called when the time limit has been reached (when

∗ isTimeOut() returned true).

∗
∗ @return true to continue (and reset the timeout)

∗ or false to cancel the current operation

∗/
virtual const bool handleTimeOut() = 0;

};

While the operation runs, the service calls isTimeout() at variable intervals.

If the isTimeout() function returns true, then handleTimeout() is called. If

the handleTimeout() function returns false, the operation is cancelled and an

operation timed out exception is thrown. Else, if handleTimeout() returns true, the

operation continues and the timeout counter is reset. The function resetTimeout() is called

each time data has been received from the server to reset the timeout delay.

When using a service, a default timeout handler is set: if an operation is blocked for more

than 30 seconds (ie. network link is down and no data was received since 30 seconds), an

operation timed out exception is thrown.

The following example shows how to implement a simple timeout handler:

class myTimeoutHandler : public vmime: : net : : timeoutHandler

{
public :

myTimeoutHandler()

{
m startTime = time(NULL);

}

const bool isTimeOut()

{
return (time(NULL) >= m startTime + 30); // 30 seconds timeout

57

}

void resetTimeOut()

{
m startTime = time(NULL);

}

const bool handleTimeOut()

{
std : : cout << ”Operation timed out .” << std : : endl ;

<< ”Press [Y] to continue , or [N] to ”

<< ”cancel the operation .” << std : : endl ;

std : : string response ;

std : : cin >> response ;

return (response == ”y” | | response == ”Y”);

}

private :

time t m startTime;

};

Listing 6.12: Implementing a simple timeout handler

To make the service use your timeout handler, you need to write a factory class, to allow

the service to create instances of the handler class. This is required because the service can

use several connections to the server simultaneously, and each connection needs its own timeout

handler.

class myTimeoutHandlerFactory : public vmime: : net : : timeoutHandlerFactory

{
public :

ref <timeoutHandler> create ()

{
return vmime: : make shared <myTimeoutHandler>();

}
};

Then, call the setTimeoutHandlerFactory() method on the service object to set the

timeout handler factory to use during the session:

theService−>setTimeoutHandlerFactory(vmime: : make shared <myTimeoutHandlerFactory>());

58

6.7 Secured connection using TLS/SSL

6.7.1 Introduction

If you have enabled TLS support in VMime, you can configure messaging services so that they

use a secured connection.

Quoting from RFC-2246 - the TLS 1.0 protocol specification: “ The TLS protocol provides

communications privacy over the Internet. The protocol allows client/server applications to

communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.”

TLS has the following advantages:

• authentication: server identity can be verified;

• privacy: transmission of data between client and server cannot be read by someone in the

middle of the connection;

• integrity: original data which is transferred between a client and a server can not be

modified by an attacker without being detected.

note: What is the difference between SSL and TLS? SSL is a protocol designed by Netscape.

TLS is a standard protocol, and is partly based on version 3 of the SSL protocol. The two

protocols are not interoperable, but TLS does support a mechanism to back down to SSL 3.

VMime offers two possibilities for using a secured connection:

• you can connect to a server listening on a special port (eg. IMAPS instead of IMAP): this

is the classical use of SSL, but is now deprecated;

• connect to a server listening on the default port, and then begin a secured connection: this

is STARTTLS.

6.7.2 Setting up a secured connection

6.7.2.1 Connecting to a “secured” port

To use the classical SSL/TLS way, simply use the “S” version of the protocol to connect to the

server (eg. imaps instead of imap). This is currently available for SMTP, POP3 and IMAP.

vmime: : shared ptr <vmime: : net : : store> store =

theSession−>getStore(vmime: : uti l ity : : url (”imaps://example. org”)) ;

59

6.7.2.2 Using STARTTLS

To make the service start a secured session using the STARTTLS method, simply set the con-

nection.tls property:

theService−>setProperty(”connection . t l s” , true) ;

note: If, for some reason, a secured connection cannot be started, the default behaviour

is to fallback on a normal connection. To make connect() fail if STARTTLS fails, set the

connection.tls.required to true.

6.7.3 Certificate verification

6.7.3.1 How it works

If you tried the previous examples, a certificateException might have been thrown. This

is because the default certificate verifier in VMime did not manage to verify the certificate, and

so could not trust it.

Basically, when you connect to a server using TLS, the server responds with a list of certifi-

cates, called a certificate chain (usually, certificates are of type X.5093). The certificate chain

is ordered so that the first certificate is the subject certificate, the second is the subject’s issuer

one, the third is the issuer’s issuer, and so on.

To decide whether the server can be trusted or not, you have to verify that each certificate is

valid (ie. is trusted). For more information about X.509 and certificate verification, see related

articles on Wikipedia 4.

6.7.3.2 Using the default certificate verifier

The default certificate verifier maintains a list of root (CAs) and user certificates that are trusted.

By default, the list is empty. So, you have to initialize it before using the verifier.

The algorithm5 used is quite simple:

1. for every certificate in the chain, verify that the certificate has been issued by the next

certificate in the chain;

2. for every certificate in the chain, verify that the certificate is valid at the current time;

3. ensure that the first certificate’s subject name matches the hostname of the server;

3And VMime currently supports only X.509 certificates
4See http://wikipedia.org/wiki/Public_key_certificate
5See http://wikipedia.org/wiki/Certification_path_validation_algorithm

60

http://wikipedia.org/wiki/Public_key_certificate
http://wikipedia.org/wiki/Certification_path_validation_algorithm

4. decide whether the subject’s certificate can be trusted:

• first, verify that the the last certificate in the chain was issued by a third-party that

we trust (root CAs);

• if the issuer certificate cannot be verified against root CAs, compare the subject’s

certificate against the trusted certificates (the certificates the user has decided to

trust).

First, we need some code to load existing X.509 certificates:

vmime: : shared ptr <vmime: : security : : cert : : X509Certificate>

loadX509CertificateFromFile(const std : : string& path)

{
std : : ifstream certFile ;

certFile .open(path. c str () , std : : ios : : in | std : : ios : : binary) ;

i f (! certFile)

{
// . . . handle error . . .

}

vmime: : uti l ity : : inputStreamAdapter is (certFile) ;

vmime: : shared ptr <vmime: : security : : cert : : X509Certificate> cert ;

cert = vmime: : security : : cert : : X509Certificate : : import(is) ;

return cert ;

}

Listing 6.13: Reading a X.509 certificate from a file

Then, we can use the loadX509CertificateFromFile function to load certificates and

initialize the certificate verifier:

vmime: : shared ptr <vmime: : security : : cert : : defaultCertificateVerifier> vrf =

vmime: : make shared <vmime: : security : : cert : : defaultCertificateVerifier>();

// Load root CAs (such as Verisign or Thawte)

std : : vector <vmime: : shared ptr <vmime: : security : : cert : : X509Certificate>> rootCAs;

rootCAs.push back(loadX509CertificateFromFile(”/path/to/root−ca1 . cer”) ;

rootCAs.push back(loadX509CertificateFromFile(”/path/to/root−ca2 . cer”) ;

rootCAs.push back(loadX509CertificateFromFile(”/path/to/root−ca3 . cer”) ;

vrf−>setX509RootCAs(rootCAs) ;

61

// Then, load cert i f icates that the user expl ic i te ly chose to trust

std : : vector <vmime: : shared ptr <vmime: : security : : cert : : X509Certificate>> trusted ;

trusted .push back(loadX509CertificateFromFile(”/path/to/trusted−site1 . cer”) ;

trusted .push back(loadX509CertificateFromFile(”/path/to/trusted−site2 . cer”) ;

vrf−>setX509TrustedCerts(trusted) ;

Listing 6.14: Using the default certificate verifier

6.7.3.3 Writing your own certificate verifier

If you need to do more complex verifications on certificates, you will

have to write your own verifier. Your verifier should inherit from the

vmime::security::cert::certificateVerifier class and implement the method

verify(). Then, if the specified certificate chain is trusted, simply return from the function,

or else throw a certificateException.

The following example shows how to implement an interactive certificate verifier which relies

on the user’s decision, and nothing else (you SHOULD NOT use this in a production application

as this is obviously a serious security issue):

class myCertVerifier : public vmime: : security : : cert : : certif icateVerif ier

{
public :

void verify (vmime: : shared ptr <certificateChain> certs)

{
// Obtain the subject ’ s cert i f icate

vmime: : shared ptr <vmime: : security : : cert : : certif icate> cert = chain−>getAt(0);

std : : cout << std : : endl ;

std : : cout << ”Server sent a ’” << cert−>getType() << ” ’”

<< ” certi f icate .” << std : : endl ;

std : : cout << ”Do you want to accept this certi f icate? (Y/n) ”;

std : : cout . flush () ;

std : : string answer ;

std : : getline (std : : cin , answer) ;

i f (answer . length() != 0 && (answer[0] == ’Y’ | | answer [0] == ’y ’))

return ; // OK, we trust the cert i f icate

// Don’ t trust this cert i f icate

62

throw vmime: : security : : cert : : certificateException () ;

}
};

Listing 6.15: A custom certificate verifier

note: In production code, it may be a good idea to remember user’s decisions about which

certificates to trust and which not. See Example6 for a basic cache implementation.

Finally, to make the service use your own certificate verifier, simply write:

theService−>setCertificateVerifier (vmime: : make shared <myCertVerifier>());

6.7.4 SSL/TLS Properties

If you want to customize behavior or set some options on TLS/SSL connection, you may use

the TLSProperties object, and pass it to the service session. The TLS/SSL options must

be set before creating any service with the session (ie. before calling either getStore() or

getTransport() on the session), or they will not be used.

The following example shows how to set the cipher suite preferences for TLS:

vmime: : shared ptr <vmime: : net : : session> sess = /∗ . . . ∗/ ;

vmime: : shared ptr <vmime: : net : : t l s : : TLSProperties> tlsProps =

vmime: : make shared <vmime: : net : : t l s : : TLSProperties>();

// for OpenSSL

tlsProps−>setCipherString(”HIGH: !ADH:@STRENGTH”);

// for GNU TLS

tlsProps−>setCipherString(”NORMAL:%SSL3RECORDVERSION”);

sess−>setTLSProperties(tlsProps) ;

Listing 6.16: Setting TLS cipher suite preferences

Please note that the cipher suite string format and meaning depend on the underlying TLS

library (either OpenSSL or GNU TLS):

• for GNU TLS, read this:

http://gnutls.org/manual/html_node/Priority-Strings.html

• for OpenSSL, read this:

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_STRINGS

63

http://gnutls.org/manual/html_node/Priority-Strings.html
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_STRINGS

You may also set cipher suite preferences using predefined constants that map to generic

security modes:

sess−>setCipherSuite(vmime: : net : : t l s : : TLSProperties : :CIPHERSUITEHIGH);

Listing 6.17: Setting TLS cipher suite preferences using predefined modes

The following constants are available:

Constant Meaning

CIPHERSUITE HIGH High encryption cipher suites (> 128 bits)

CIPHERSUITE MEDIUM Medium encryption cipher suites (>= 128 bits)

CIPHERSUITE LOW Low encryption cipher suites (>= 64 bits)

CIPHERSUITE DEFAULT Default cipher suite (actual cipher suites used depends on the

underlying SSL/TLS library)

6.8 Tracing connection

Connection tracing is used to log what is sent and received on the wire between the client and

the server, and may help debugging.

First, you have to create your own tracer, which must implement the

vmime::net::tracer interface. Here is an example of a tracer which simply logs to

the standard output:

class myTracer : public vmime: : net : : tracer

{
public :

myTracer(const vmime: : string& proto , const int connectionId)

: m proto(proto) , m connectionId(connectionId)

{
}

// Called by VMime to trace what is sent on the socket

void traceSend(const vmime: : string& line)

{
std : : cout << ”[” << m proto << ”:” << m connectionId

<< ”] C: ” << l ine << std : : endl ;

}

// Called by VMime to trace what is received from the socket

void traceReceive(const vmime: : string& line)

{
std : : cout << ”[” << m proto << ”:” << m connectionId

64

<< ”] S: ” << l ine << std : : endl ;

}

private :

const vmime: : string m proto;

const int m connectionId ;

};

Listing 6.18: A simple tracer

Also create a factory class, used to instanciate your tracer objects:

class myTracerFactory : public vmime: : net : : tracerFactory

{
public :

vmime: : shared ptr <vmime: : net : : tracer> create

(vmime: : shared ptr <vmime: : net : : service> serv ,

const int connectionId)

{
return vmime: : make shared <myTracer>

(serv−>getProtocolName() , connectionId) ;

}
};

Next, we have to tell VMime to use it. When you create your service (either store or

transport), simply call the setTracerFactory on the service and pass an instance of your

factory class:

vmime: : shared ptr <vmime: : net : : transport> store =

session−>getStore(”imaps://user :password@imap.myserver .com”);

// Enable tracing communication between client and server

store−>setTracerFactory(vmime: : make shared <myTracerFactory>());

Listing 6.19: Enabling tracer on a connection

That’s all! Now, everything which is sent on/received from the socket will be logged using

your tracer object. Here is an example of a trace session for IMAP:

[imaps:1] S: * OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR
LOGIN-REFERRALS ID ENABLE IDLE AUTH=PLAIN] Dovecot ready.

[imaps:1] C: a001 AUTHENTICATE PLAIN
[imaps:1] S: +

65

[imaps:1] C: {...SASL exchange: 52 bytes of data...}
[imaps:1] S: a001 OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR

LOGIN-REFERRALS ID ENABLE IDLE SORT SPECIAL-USE QUOTA] Logged in
[imaps:1] C: a002 LIST "" ""
[imaps:1] S: * LIST (\Noselect) "." ""
[imaps:1] S: a002 OK List completed.
[imaps:1] C: a003 CAPABILITY
[imaps:1] S: * CAPABILITY IMAP4rev1 LITERAL+ SASL-IR

LOGIN-REFERRALS ID ENABLE IDLE SORT SPECIAL-USE QUOTA
[imaps:1] S: a003 OK Capability completed.
[imaps:1] C: a003 SELECT INBOX (CONDSTORE)
[imaps:1] S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft

$NotJunk NonJunk JunkRecorded $MDNSent NotJunk $Forwarded
Junk $Junk Forwarded $MailFlagBit1)

[imaps:1] S: * OK [PERMANENTFLAGS (\Answered \Flagged \Deleted
\Seen \Draft $NotJunk NonJunk JunkRecorded $MDNSent NotJunk
$Forwarded Junk $Junk Forwarded $MailFlagBit1 *)]
Flags permitted.

[imaps:1] S: * 104 EXISTS
[imaps:1] S: * 0 RECENT
[imaps:1] S: * OK [UNSEEN 6] First unseen.
[imaps:1] S: * OK [UIDVALIDITY 1268127585] UIDs valid
[imaps:1] S: * OK [UIDNEXT 32716] Predicted next UID
[imaps:1] S: * OK [HIGHESTMODSEQ 148020] Highest
[imaps:1] S: a003 OK [READ-WRITE] Select completed.

Please note that no sensitive data (ie. login or password) will be traced. Same, blob data

such as message content or SASL exchanges will be logged as a marker which indicates how

many bytes were sent/received (eg. ”...SASL exchange: 52 bytes of data...””).

66

Listings

3.1 Initializing VMime and the platform handler . 13

4.1 Smarts pointers and creating objects . 16

4.2 Casting smart pointers . 17

4.3 Catching VMime exceptions . 18

4.4 Using vmime::datetime object . 20

4.5 Using mailboxes and mailbox groups . 21

4.6 Getting and setting parameter value in fields . 24

4.7 Using stream adapters . 25

4.8 Using content handlers to extract body text from a message 26

4.9 Setting the contents of a body part . 27

4.10 Creating an attachment from a file . 27

4.11 Extracting and converting body contents to a specified charset 28

4.12 Creating vmime::text objects . 29

4.13 Decoding RFC-2047-encoded data . 30

4.14 Converting data in a vmime::text to a specified charset 30

4.15 A simple example of using an encoder . 30

4.16 Enumerating encoders and their properties . 31

5.1 Parsing a message from a file . 33

5.2 Using vmime::messageParser to parse more complex messages 34

5.3 Building a simple message from scratch . 36

5.4 Building a simple message using vmime::messageBuilder 37

5.5 Building a message with an attachment using vmime::messageBuilder . . . 38

68

5.6 Building an HTML message with an embedded image using the

vmime::messageBuilder . 39

5.7 Testing if a body part is an attachment . 40

5.8 Extracting all attachments from a message . 41

5.9 Adding an attachment to an existing message . 41

6.1 Setting user credentials using session properties 48

6.2 A simple interactive authenticator . 48

6.3 A simple SASL authenticator . 49

6.4 Using a transport service . 51

6.5 Connecting to a store service . 52

6.6 Opening a folder from its path . 53

6.7 Fetching information about multiple messages . 54

6.8 Using fetchAttributes object to fetch specific header fields of a message 54

6.9 Extracting messages . 55

6.10 Extracting a specific MIME part of a message . 55

6.11 Deleting messages . 55

6.12 Implementing a simple timeout handler . 57

6.13 Reading a X.509 certificate from a file . 61

6.14 Using the default certificate verifier . 61

6.15 A custom certificate verifier . 62

6.16 Setting TLS cipher suite preferences . 63

6.17 Setting TLS cipher suite preferences using predefined modes 64

6.18 A simple tracer . 64

6.19 Enabling tracer on a connection . 65

69

List of Figures

4.1 Diagram for address-related classes . 21

4.2 Overall structure of MIME messages . 22

6.1 Overall structure of the messaging module . 43

70

List of Tables

2.1 CMake build options . 11

4.1 Standard fields and their types . 23

4.2 Standard parameterized fields . 25

6.1 Properties common to all protocols . 45

6.2 Protocol-specific options . 46

71

Appendix A

The GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if

72

you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of

73

works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other

74

than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do

75

not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

76

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a

77

copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent

78

the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

79

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the

80

additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

81

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s "contributor version".

A contributor’s "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

82

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may

83

otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

84

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

85

to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

86

	Introduction
	Overview
	Features
	Copyright and license

	Building and Installing VMime
	Introduction
	What you need
	Obtaining source files
	Compiling and installing
	Customizing build
	Build options

	Getting Started
	Using VMime in your programs
	If you can not (or do not want to) use pkg-config
	Platform-dependent code

	Basics
	Reference counting
	Introduction
	Instanciating reference-counted objects
	Using smart pointers

	Error handling
	Basic objects
	The component class
	Date and time
	Media type
	Mailbox and mailbox groups

	Message, body parts and header
	Introduction to MIME messages
	Header and header fields
	Standard header fields
	Parameterized fields

	Streams
	Streams and stream adapters
	Stream filters

	Content handlers
	Introduction
	Extracting data from content handlers
	Creating content handlers

	Character sets, charsets and conversions
	Non-ASCII text in header fields
	Encodings
	Introduction
	Using encoders
	Enumerating available encoders

	Progress listeners

	Parsing and Building Messages
	Parsing messages
	Introduction
	Using the vmime::messageParser object

	Building messages
	A simple message
	Adding an attachment
	HTML messages and embedded objects

	Working with attachments: the attachment helper

	Working with Messaging Services
	Introduction
	Working with sessions
	Setting properties
	Available properties
	Instanciating services

	User credentials and authenticators
	Using transport service
	Using store service
	Connecting to a store
	Opening a folder
	Fetching messages
	Extracting messages and parts
	Deleting messages
	Events

	Handling timeouts
	Secured connection using TLS/SSL
	Introduction
	Setting up a secured connection
	Connecting to a ``secured'' port
	Using STARTTLS

	Certificate verification
	How it works
	Using the default certificate verifier
	Writing your own certificate verifier

	SSL/TLS Properties

	Tracing connection

	Listings
	List of figures
	List of tables
	The GNU General Public License

